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ABSTRACT

This paper details the architectural design and implemen-
tation of a new AI-enabled Computer Vision (AI-CV)
Framework developed in ViBEKO activity. The AI-CV
Framework combines an AI platform and a Mission Con-
trol System (MCS). The AI platform selected was ESA’s
AInabler infrastructure based on the Kubeflow platform,
and ONE-CC was selected as the MCS, which combines
the 3DROCS rover control environment with the standard
EG(O)S-CC mission control system. Also detailed are
two software prototypes which implement robotic opera-
tions use cases. The first use case considers terrain clas-
sification of rover image products to increase situational
awareness for rover operators when planning safe paths
to traverse. The second use case implements rover global
localisation to visually display to the rover operator the
current best estimate of the rover position global coor-
dinate system, using the most recent rover and orbital
image and products. The AI-CV Framework has been
developed to TRL 4 during the ViBEKO activity and the
implemented use cases demonstrate the overall feasibility
of the solution.

Key words: Mission Control System, AInabler, Planetary
Robotics, Terrain Classification, Global Localisation.

1. INTRODUCTION

Advancements in Artificial Intelligence (AI) and Deep
Learning (DL) stand out as transformational technologies
in the digital age, especially when applied to Computer
Vision (CV) tasks such as: object detection, semantic
segmentation, pose estimation, and many others. Com-
puter Vision is a well-established technique used in space
applications for various tasks ranging from interplanetary
navigation to studying the formation of planets. Recent
trends show an increased desire to apply powerful AI-
based Computer Vision techniques in the space domain,
both within the ground segment, and the flight segment.

Image products from planetary rover missions provide

an invaluable resource for both operators and science
teams when planning activities. In rover operations, im-
age products are used for numerous tasks, including both
long-term strategic and short-term tactical path planning,
hazard avoidance and target identification. The situa-
tional awareness afforded directly through the visuali-
sation of raw or processed image products is essential
to maintain rover safety during operations. Convention-
ally, processing of the received image products has been
largely an intensive manual, or semi-automated process,
requiring considerable resources.

Several systems have been proposed in the past which
aim to provide ground control system tools for rover oper-
ators to perform short-term tactical and long-term strate-
gic planning for rover activities. 3DROCS is a system
developed in the framework of the ‘Ground Control Sta-
tion For Autonomy’ ESA GSTP Activity. Its main objec-
tives are to reduce the tactical planning process time, in-
crease user awareness on the system behaviour, improve
the Activity Plan understanding and provide a unified in-
terface for strategic and tactical planning [1]. The ESA
METERON (Multi-purpose End-To-End Robotic Opera-
tions Network) initiative aimed to demonstrate the fea-
sibility of controlling advanced robots on Earth using
‘telepresence’ control equipment, providing essential ex-
perience for planning and preparing real human explo-
ration missions. In this context, METERON can be seen
as a test-bed for future missions to the Moon, Mars and
other celestial bodies. The METERON activities are or-
ganised in dedicated experiments, which combine test-
ing operations, ground and space systems, technologies,
and robotic systems in an environment as realistic as pos-
sible [2]. More recently, the Robotic Digital Twin [3]
activity proposed a new framework combining engineer-
ing tools and AI techniques to allow the on-line update
of system models, facilitate planning, enable monitoring
and fault analysis in the context of space missions, partic-
ularly for robotic assets. Lastly, the recent establishment
of the AInabler Platform as a Service (PaaS), developed
in the AI4Ops activity [4] has provided ESA users the



ability to train and deploy AI models for mission opera-
tions, hosted on ESA infrastructure.

Vision Based Knowledge Extraction using Artificial In-
telligence (ViBEKO) is an ESA-funded activity focusing
on the design and prototyping of an AI-enabled Com-
puter Vision (AI-CV) Framework, with a view to auto-
mate the extraction of operationally relevant information
from mission products to enhance situational awareness
in typical rover operations scenarios, particularly in tac-
tical, activity planning cycle scenarios. Specifically, the
ViBEKO activity has resulted in the following main con-
tributions:

• An extensible AI-CV Framework for hosting ma-
chine learning models was developed, based on the
typical AI and Computer Vision processing chain,
consisting of: preparing and pre-processing image
and associated metadata products, model training,
evaluation and versioning, and deploying selected
model for later inference.

• The AI-CV Framework was established using exist-
ing ground systems tools and Mission Operation In-
frastructure (MOI) through interface extensions to
support image and AI product exchange and storage.

• Two AI-driven software prototypes were developed
and validated using the established AI-CV Frame-
work, utilising visual information from rover and
orbital image products for selected rover operations
use cases.

This paper focuses on the architectural design and im-
plementation of the AI-CV Framework developed in
ViBEKO. Additionally, this paper details concrete exam-
ples of AI-CV framework usage, by means of describ-
ing the design and implementation of two software pro-
totypes selected to address common rover operation use
cases, namely: planetary rover terrain classification and
global localisation.

2. AI-ENABLED COMPUTER VISION FRAME-
WORK FOR OPERATIONS

The Architecture concept of the AI-CV Framework is
highlighted in Figure 1, which showcases the main sys-
tem components taking part in the vision-based knowl-
edge extraction workflow aimed at enhancing operators
capabilities. The suggested workflow follows the clas-
sical approach utilised in the processing of spacecraft
telemetry. Within this proposed architecture, the origin of
the image products is the space robotic asset. It could be
a planetary rover, robotic arm, spacecraft or any other de-
vice with capabilities to produce images. The asset sends
products to the ground segment, routing to the Mission
Control System (MCS). An AI Platform interacts with
MCS in order to download these mission products and
perform vision-based knowledge extraction with the use
of AI techniques. The results of AI model inference is re-
turned to the MCS and visualised to the operator, thanks
to the robotic extensions available in the MCS. The AI
platform is also used for model training and evaluation,
by requesting large datasets hosted by the MCS. Both the
MCS and AI Platform components play key roles in ful-

Figure 1. High level perspective of the AI-CV Framework
Architecture

filling the activity objectives briefly outlined before. As
such, this have been the main focus of the ViBEKO ac-
tivity, further detailed below. Integration of the other sys-
tems highlighted in the diagram could be considered in
the future to increase the overall TRL of the solution.

2.1. Mission Control System (MCS)

The Mission Control System (MCS) selected for the ac-
tivity is ONE-CC, which was developed as part of the
ONEOPSDS activity, where the key functionality of the
3DROCS control environment was included into the stan-
dard EG(O)S-CC mission control system. EG(O)S-CC
is a new generation mission control system designed
and developed by ESA, based on the EGS-CC solu-
tion providing a modular design for creating customised
MCS instances for particular missions. The main part
of the EGS-CC instance is the backend running compo-
nents responsible for key functions, such as telemetry and
telecommanding chains, access to data and file archives,
and maintaining the mission definitions. Frontend clients
can connect to the backend and provide users with a GUI,
enabling respective visual capabilities. For ONE-CC, in
addition to the standard EGS-CC views, the 3DROCS
views were added, including 3D visualisations of the con-
trolled assets, the planetary environment, captured image
products, and engineering state of the asset subsystem.
The ONE-CC MCS required customisation to align with
VIBEKO’s specific requirements, namely: enabling the
retrieval of image data from the MCS and integrating AI-
generated results back into the MCS for operator utili-
sation. To achieve this, the creation of new extensions
was essential. These extensions encompassed compo-
nents developed within the scope of the VIBEKO project,
such as facilitating access to the filespace and injecting
telemetry through REST queries.



2.2. AI Platform

The AI platform selected for integration within the
ViBEKO AI-CV Framework is ESA’s AInabler instance
of Kubeflow. Kubeflow, is an open-source machine
learning platform designed for Kubernetes-based con-
tainer orchestration, and is the back-end of ESA’s AIn-
abler Platform as a Service (PaaS) solution. Through the
AI4Ops activity [4], ESA AInabler instances allow users
to streamline their machine learning workflows by having
access to ESA infrastructure and data silos to extract the
most current data for model training.

The AInabler system is a mature and robust AI platform,
but with limited underlying interfaces which handle com-
munication to external systems. To facilitate communi-
cation with the MCS, new extensions in the form of a
set of REST API interfaces were developed in ViBEKO
which allow the transfer of data required for both model
training and inference. The ViBEKO instance of AIn-
abler is where the majority of infrastructure development
efforts were made, in the form of pipelines: a series of
steps written in Python which can be encapsulated and
re-used as individual components. For example, the pre-
processing step for resizing an image would be a sin-
gle step in a larger pipeline that includes other process-
ing steps in a directed acyclic graph (DAG). Pipelines
were chosen for implementing the software prototypes
for their reusability and representativeness, using a peri-
odic running schedule any new data made available from
the MCS. In doing so, operators can always have up-
to-date predictions available to them on-demand. The
ViBEKO pipeline was split into a series of tasks which
follow typical Computer Vision and Machine Learning
processing chains, namely:

• Download: checks the MCS for any new images
or telemetry data, and downloads these products if
available.

• Pre-processing: prepares the downloaded products
to be used for later training or inference.

• Model Training or Inference: the AI-CV Frame-
work mandates periodic inference, by default
nightly. But should the user wish to train a new
model, then a training step facilitates this, replac-
ing the inference task. Model training is performed
by requesting large datasets, which are provisioned
through the MCS, and the corresponding hyperpa-
rameters and associated metadata from the training
session are uploaded back to the MCS for later use.

• Post-processing: before uploading to the MCS,
some models may require post-processing steps to
format the prediction results before they can be vi-
sualised by the MCS frontend.

• Upload: uploads the results in the form of predic-
tions from inference (visualisation results for the
MCS to visualise), or training products (e.g., hyper-
parameters etc.,) to the MCS backend.

3. USE CASE OVERVIEW

3.1. Terrain Classification

Terrain classification is an essential function to ensure
that a planetary rover can safely negotiate different ter-
rains. Automating the identification of terrain types from
rover images from ground segment workflows can both
improve tactical planning efficiency and improve situa-
tional awareness for rovers operators. This is achieved
by training models to learn different geological character-
istics of the concerned planetary surface. Consequently,
this use case aims to identify and build upon the best-
performing deep learning models, and prototype these
inside the AI-CV Framework, to perform semantic seg-
mentation of planetary surfaces.

A number of recent planetary terrain classification meth-
ods have been proposed using a variety of models, using
both orbital and surface image products. Terrain classifi-
cation using orbital images is often employed in the anal-
ysis of planetary landing site candidates. The NOAH-H
project [5] aimed to create a comprehensive set of onto-
logical classes encompassing diverse surface textures in
select areas of the surface of Mars. A deep learning-based
terrain classification system was employed to categorise
the various types of terrains, using the Google DeepLab
model, the solution yielded an mIoU of 74.15%. Also, in
[6], the authors benchmark different state-of-the-art se-
mantic segmentation models for planetary safe site land-
ing, including U-Net and DeepLabv3. Ultimately, Con-
vDeconv exhibited the best performance in terms of accu-
racy and had the shortest inference time. Additionally, it
proved to be more computationally efficient and memory-
friendly, attaining a pixel accuracy of 95% and an mIoU
of 89%.

Using rover image products, [7] proposed a unique
hybrid attention-based semantic segmentation approach
for surface-based terrain classification, featuring a dual-
branch network. This method effectively integrates both
the broader global context and the finer local context of
unstructured terrains. A merging module is employed
to combine the contextual information from these two
branches to produce the final segmentation through a
newly designed loss function. The performance of this
method is assessed on both a newly generated panoramic
dataset called MarsScapes and the publicly available
AI4Mars dataset. The method obtains a 60% mIoU on
the MarsScapes dataset, and a 91% mIoU on the AI4Mars
dataset. It’s important to emphasize that the computa-
tional performance of this approach has not been veri-
fied. Additionally, the specific testing set configuration,
performance metrics, and number of classes considered
for training are not specified. A semantic segmentation
network is introduced in [8] with a focus on limited la-
beled data of the Mars terrain. The approach employs
semi-supervised learning, where an unsupervised model
trained on an unlabeled dataset is adapted to a super-
vised network using a small amount of labeled data. Test-
ing is conducted on the AI4Mars dataset, which includes
four classes: soil, bedrock, sand, and big rock. To en-



Figure 2. AI4Mars dataset image labelling of soil,
bedrock, sand and big rock [9].

hance classification, two additional classes representing
the rover itself and distances beyond 30 meters were in-
corporated, creating a six-class model. Notably, the lat-
ter two classes are excluded from testing and evaluation
metrics. The results indicate an impressive pixel-level ac-
curacy of 97.5% on the M3 testing set of the AI4Mars
dataset, surpassing the plain supervised learning accuracy
of 95% on the same dataset.

Datasets: NASA published the AI4Mars dataset [9],
available at [10]. It consists of 35K images captured from
MER and MSL-Curiosity rovers {Spirit navcam (3K),
Opportunity navcam (6K), Curiosity navcam (17K) and
Curiosity mastcam (9K)} and includes 326K full image
labels. However, only a subset (MSL) of 16K images are
readily usable for training semantic segmentation models.
AI4Mars considers fewer and simpler labels in compar-
ison to LabelMars [11]. The four labels included in the
AI4Mars dataset are Soil, Bedrock, Sand, and Big Rock
with different data proportions. The rarest class is Big
Rock and the most common one is Bedrock. Besides the
four classes; sky, distances further than 30 meters and the
rover hardware are assigned a class label 255 and might
be ignored during the training and testing process. Three
holdout testing sets M1, M2, M3 each with 322 images
are provided. The M3 set is considered the benchmark,
hence recommendable for model testing.

The AI4Mars dataset, consisting of 16k Curiosity im-
ages, was divided into a 90% training set and a 10% val-
idation set. Testing is conducted using the holdout sets
M1, M2, and M3 provided, as previously described. For
testing, areas of images containing rover hardware, pix-
els at distances beyond 30 meters, and unlabeled pixels
are considered as a single class, resulting in a five-class
segmentation model.

Model Overview: Following a review of the cur-
rent state-of-the-art, models based on U-Net and
DeepLabV3+ were selected for further evaluation and
comparison. Method evaluation is done on the publicly
available dataset AI4Mars[10]. Both models described
below are based on encoder-decoder architectures.

Various pre-processing techniques were investigated to
assess the potential to improve model performance. Fur-
thermore, in the pursuit of additional performance im-
provement, especially for rare classes, various augmen-
tation methods were employed, including the application
of a GAN-based model, namely SemanticStyleGAN, to

Figure 3. U-Net architecture [12].

Figure 4. DeepLabV3+ architecture [13].

generate synthetic images.

U-Net Architecture: The U-Net is an encoder-decoder-
based architecture originally used for medical/biomedical
image segmentation [12]. The encoding and decoding
paths give the model its U shape. To enable reusing
learned features during down sampling, the feature maps
in the down sampling path are concatenated with their
mirrored counterparts among the up sampling path to
catch various levels of abstractions (see grey arrows in
Figure 3). Different CNN backbones, such as VGG,
ResNet, Inception etc., can be employed in U-Net to eval-
uate encoding performance in different applications.

DeepLabV3+ Architecture: The DeepLabV3+ is the
latest version from the popular DeepLab family, which
includes DeepLabV1 - 3, and others [13]. The model is
also based on an encoder-decoder architecture and uses
atrous/dilated convolutions which increases the field of
view without increasing the number of parameters. It
uses filters at multiple sampling rates to capture objects
and multiscale image contexts, and combines cascaded
and parallel modules of dilated convolutions (see Figure
4). The encoder includes CNN backbone networks such
as ResNet-101 or Xception, and the Atrous conv layers.

SemanticStyleGAN: The SemanticStyleGAN [14] is
one of the most effective GAN models for generating im-
ages and their associated semantic segmentation masks.
While commonly employed for generating and mixing
facial features, its versatility extends to various other do-
mains. Notably, this method not only generates new im-
ages but also produces corresponding semantic masks,
making it a preferable method, avoiding additional la-
belling. Subsequently, this model is used to create syn-
thetic images, thereby enlarging the dataset utilised, to



Figure 5. SemanticStyleGAN generated images and
masks.

train the terrain classification models. To assess the qual-
ity of these generated images, standard metrics like In-
ception Score (IS) and Fréchet Inception Distance (FID)
are used. Figure 5 shows an example of a generated im-
age along with its corresponding mask.

Data Processing: Normalisation and centering processes
were employed in all our experiments. Nevertheless, it’s
worth noting that standardisation led to a slightly dimin-
ished performance, and Contrast Limited Adaptive His-
togram Equalization (CLAHE) did not yield any per-
formance improvements in the limited experiments con-
ducted and therefore dropped from the pre-processing
pipeline. The volume of training data was increased by
applying data augmentation. Straightforward augmenta-
tions introduced multiple variations of the original image,
including flipping, cropping, rotating, random zooming,
and random contrast adjustments. Additionally, advanced
augmentation techniques using generative models such as
SemanticStyleGAN are used to produce additional syn-
thetic images.

Training with GAN Models: Two SemanticStyleGAN
models, G1 and G2, are trained using different subsets
from the AI4Mars dataset. G1 is trained on a subset con-
sisting of 2,226 images, ensuring that the rare class ”Big
Rock” is consistently included. On the other hand, G2 is
trained on the entire training set, which comprises a to-
tal of 14,457 images. Subsequently, each of these models
generates 4,000 new synthetic Mars images. In two sepa-
rate experiments, these synthetic images are added to the
training set to assess their impact on overall performance
and on the performance of the rare class.

Results & Discussion: Overall, DeepLabV3+ outper-
formed the U-Net model significantly in terms of both
pixel accuracy and inference time, while achieving a sim-
ilar mIoU on the testing sets (see Table 1). Consequently,
DeepLabV3+ was selected for subsequent experiments.
Training the models for 50 epochs yielded satisfactory re-
sults, but further improvements might be attainable with
longer training durations. Basic augmentation techniques
such as flipping, cropping, and zooming did not enhance
performance, whereas employing advanced augmenta-
tion techniques based on GAN models improved the IoU
on the testing sets.

The DeepLabV3+ model achieved a maximum segmen-
tation accuracy of 95% on the AI4Mars testing set M3
(see Table 1). Additionally, augmenting the data with
the GAN model G2 (see Table 2), trained on the entire
dataset, increased the mIoU by approximately 3%, reach-

Figure 6. DeepLabV3+ model predictions (Predicted
Mask) and ground truth (True Mask) on AI4Mars.

ing a value of 61%. Notably, training the GAN model
solely with images containing the rare class ”Big Rock”
improved the IoU for this specific class by 1-2%.

Using deeper backbone models like ResNet101 in
DeepLabV3+ led to a modest enhancement in per-
formance when contrasted with shallower models like
ResNet50. However, it’s crucial to weigh this marginal
improvement against the increased complexity these
deeper backbones bring to the model.

Figure 6 displays the mask predictions of the
DeepLabV3+ model alongside the ground truth on
the AI4Mars Dataset. In general, the model demonstrates
impressive accuracy when predicting classes like Soil,
Bed Rock, Sand, and Background. Nevertheless, its
performance in predicting the Big Rock class falls short
of expectations, frequently resulting in confusion with
the Bed Rock class.

Table 1. U-Net and DeepLabV3+ evaluation results;
Acc,IoU, mIoU, inference time (s) on AI4Mars dataset.

Model Backbone Test
set

Acc Infer.
time

mIoU IoU

Soil Bedrock Sand Big
Rock

M1 0.80 33 0.56 0.76 0.63 0.74 0.11
U-Net MobileNetV2 M2 0.86 32 0.54 0.77 0.53 0.77 0.10

M3 0.92 32 0.45 0.63 0.36 0.71 0.08
M1 0.82 77 0.57 0.77 0.62 0.75 0.12

U-Net VGG16 M2 0.88 78 0.55 0.78 0.52 0.79 0.12
M3 0.92 78 0.45 0.64 0.35 0.71 0.10
M1 0.84 4 0.57 0.78 0.64 0.77 0.10

DeepLabv3+ Resnet50 M2 0.90 4 0.55 0.79 0.54 0.79 0.08
M3 0.95 4 0.44 0.63 0.37 0.69 0.07
M1 0.85 10 0.58 0.78 0.66 0.77 0.09

DeepLabv3+ Resnet101 M2 0.91 10 0.55 0.79 0.54 0.80 0.08
M3 0.95 10 0.45 0.64 0.35 0.72 0.07

3.2. Global Localisation

The ability to globally localise a planetary rover on the
surface is critically important for every exploration mis-
sion. The objective of the global localisation function
is to determine the position of the rover with respect to
some global coordinate system. It is generally used to



Table 2. DeepLabV3+ models result using GAN gener-
ated images. Backbone = ResNet50, input image size =
256x256.

Model Trained
on

Test
set

Acc mIoU IoU

Soil Bedrock Sand Big
Rock

M1 0.84 0.57 0.78 0.64 0.77 0.10
DeepLabv3+ AI4Mars M2 0.90 0.55 0.79 0.54 0.79 0.08

M3 0.95 0.44 0.63 0.37 0.69 0.07
M1 0.86 0.58 0.78 0.66 0.78 0.11

DeepLabv3+ AI4Mars+G1 M2 0.91 0.55 0.78 0.54 0.79 0.1
M3 0.95 0.44 0.63 0.35 0.7 0.08
M1 0.86 0.61 0.78 0.66 0.77 0.09

DeepLabv3+ AI4Mars+G2 M2 0.91 0.58 0.79 0.54 0.80 0.06
M3 0.95 0.47 0.62 0.35 0.71 0.05

correct for the accumulation of relative localisation error
between rover traverse activities.

Several methods have been used over the years to fulfil
the task of rover global localisation, based on different
techniques and various types of sensors. On-board celes-
tial navigation methods, based on sun sensing [15] and
star tracking [16] have been proposed. However, their
performances are highly dependent on INS sensor reso-
lutions as well as precise calibration and initialisation to
be effective, often resulting in positional errors in the or-
der of 100m and subject to sensor drifts.

Numerous strategies have been proposed using vision-
based methods using conventional CV techniques. From
the ground segment, Bundle Adjustment was success-
fully performed using descent imagery and collected
rover images to construct an image network with man-
ually defined tie-points. From on-board, Skyline-based
methods [17] [18] estimate the rover’s absolute posi-
tion through comparing the observed skyline with a set
of “simulated” skyline candidates rendered from DEMs.
The matching of local and globally traceable characteris-
tics, such as terrain topography directly [19] [20], or by
matching specific salient visible features [21] [22] have
also been proposed.

Recently, a number of Deep Learning approaches to map-
based feature matching for global localisation have been
developed. These have shown better generalisation prop-
erties in varied conditions, when compared with conven-
tional CV techniques. Approaches include the successful
demonstration of Siamese Neural Networks (SNNs) [23],
with Generative Adversarial Networks (GANs) used to
increase the dataset size for training. A CNN discrimina-
tor is trained to score the pose likelihood between a posi-
tion rendered DEM image with a rover image to score the
matching probability based on learned deep correspon-
dences. Another model based on a Siamese Neural Net-
work (SNN) model, called PLaNNet [24], learns deep as-
sociations between visible salient features of reprojected
panoramic rover images and corresponding regional or-
bital image tiles, from which the rover position can be
determined as the highest scoring region correspondence.

Datasets: For ViBEKO, the main interest was to develop
a prototype in the AI-CV Framework, based on a Deep
Learning approach that could run well on real image data.
Therefore, three different datasets were selected: a syn-
thetic dataset with a large number of images for training,
and two real world datasets with more realistic and varied
data that better represent an actual mission. A medium
sized synthetic dataset was generated based on the work
from [24]. This data was then pre-processed to generate
the ground reprojection from four directional rover im-
ages, as shown in Figure 7 below. Additional filtering
is then performed to remove images that happen to be
captured in very dark areas that would lead to unusable
reprojections. Each reprojection is then coupled with its
corresponding regional orbital image tile.

To provide additional and more realistic samples for
training, another real world dataset was explored, the
ENAV dataset [25]. This dataset was collected at
the Canadian Space Agency’s Mars Emulation Terrain
(MET) in Saint-Hubert, Quebec, Canada. The platform
was fitted with eight cameras on a mast, a monocular
camera, IMU, and ground truth data. It also provides an
aerial DEM with a px resolution of 0.2px/m which is cru-
cial to be able to associate rover and orbital views. With
this new real-world data, more advanced filtering was re-
quired. This is because, as the sun would often overex-
pose some of the frames. A brightness balancing filter
based on CLAHE was used to mitigate this effect and
avoid having the sun-exposed side of the reprojection too
dark.

The ESA Tenerife dataset (also known as Planetary
Robotics Lab (PRL) Martian Terrain Dataset) is a col-
lection of traverses at various lengths, totalling 13 km, in
representative planetary landscape [26]. It contains mul-
tiple stereo camera streams for LocCam, HazCam and
PanCam, and data from ToF camera, IMU, wheel and
PTU odometry and LiDAR scans, Georeferenced DEMs
and GPS ground truth. Given the interesting location and
overall realism of the dataset, it was fully reserved for the
final demonstration, while all the training and validation
was performed on a combination of synthetic and ENAV
data.

Model Overview: The chosen architecture was based on
a Siamese Neural Network (SNN), as discussed above,
with a ResNet backbone proposed by [24], and extended
in a few ways:

• More datasets were considered to improve the gen-
eralisation and performances of the model, espe-
cially using real-world data.

• An evaluation of various backbones was performed,
based on commonly used CNNs such as DenseNet,
VGG, and ResNets of various sizes, and a few oth-
ers.

• Various pre-processing steps were performed, cus-
tomised for each dataset, in particular the two real-
world datasets.

• Investigation and tuning of the training process and
parameters, such as the depth of the retraining and



fine-tuning.

The two backbone CNNs receive the rover’s reprojec-
tion and an orbital image time as input, both covering
a 50x50m area at 128px resolution. The two CNNs gen-
erate an embedding of the two images which are then fed
into the comparison layers, consisting of two fully con-
nected layers that transform the 256 values of the embed-
ding into a single similarity score between 0 and 1.
A brute-force approach to matching was performed,
where given a single rover reprojection, an exhaustive
search of the full orbital image space is performed, gen-
erating an orbital tile the same size as the reprojection at
different locations, in order to find the best matches.

Figure 7. Architecture of the Global Localisation
Pipeline based on Siamese Networks.

Data Processing: To further extend the dataset, data aug-
mentation was performed. Typical augmentations, such
as scaling, cropping, zooming, or flipping were not pos-
sible due to them breaking the spatial correspondence be-
tween the reprojections and orbital images. Ultimately,
only the orientation could be altered. This method also
made sense from an operational standpoint: in the prob-
lem of global localisation, it should not be assumed there
will be a good absolute heading estimate to produce a re-
projection aligned to the orbital images, which was the
case in the synthetic dataset.

Lastly, a final post-processing phase is needed to gener-
ate a useful result with a position estimate, as the SNN
only estimates the similarity between two images. The
ENAV and PRL datasets have an orbital image contain-
ing both colour layers and a geotag layer that facilitates
the mapping of pixels to GNSS coordinates. Therefore,
a transformation between pixel and GNSS coordinates
could be established, based on the highest location simi-
larity identified by the SNN. The top N=5 matches were
taken as location candidates and their pixel coordinates
transformed to GNSS coordinates. The final results for
the PRL-Tenerife dataset are shown in Figure 8.

Results & Discussion: A few different metrics were used
to evaluate the model performances. The objective was to
cover both traditional Deep Learning accuracy, and also
capture the operational performances of the scenario of
global localisation accuracy. Using an estimation score,
the minimum distance between the N=5 best estimates
and the GPS groundtruth are used and averaged across
the batch. To maintain a consistent evaluation, the same
batch of the testing dataset was used across all experi-
ments.

Direct comparison with similar applications is not

Figure 8. Results of the Global Localisation Pipeline vi-
sualised on the orbital image of the PRL Tenerife dataset.

straightforward, as this approach is not extensively used
in literature. [24] showed similar performances as that
proposed here, but while it used a similar architecture,
it was on a purely synthetic dataset. In this project, the
main interest was to be able to generalize to new and
unseen environments coming from real data. [27] also
uses a similar SNN, comparing the orbital image directly
with the monocular frames, instead of the ground repro-
jection, as part of a bigger architecture with a Particle
Filter and VO pose estimation. They were able to ob-
tain much higher accuracy thanks to the VO refinement,
large dataset and the progressive computation, whilst our
approach was one-shot on a single sample of data and
used a limited size dataset. For a direct comparison, our
method used a similar approach as [24] by comparing
its performances against fully random sampling, Sum of
Absolute Differences (SAD), and Sum of Squared Differ-
ences (SSD). The results are reported in Table 3 and show
a substantial improvement from random, SAD, and SSD
thanks to the SNN architecture.

Table 3. Evaluation of the Global Localisation Pipeline
on the Tenerife Dataset.

SNN Evaluation with Random Sampling, SSD, and SAD, Position Score
Backbone: ResNet50 until last classifier. Epochs: 50. Steps: 500.
Dataset: PRL
Random Sam-
pling

Sum of
Squared
Differences
(SSD)

Sum of Ab-
solute Differ-
ences (SAD)

Position Esti-
mation Score

186.66956747 149.69381958 114.90633132 58.6318445

4. CONCLUSIONS

The ViBEKO activity has successfully demonstrated the
potential for AI-CV pipelines to perform complex knowl-
edge extraction tasks in the context of rover operations
following an automated paradigm. In the activity, a new
AI-CV Framework has been proposed, which builds upon
existing ground systems infrastructure, namely the ESA
AInabler platform and ONE-CC (integrated 3DROCS
and EG(O)S-CC). Two representative rover operations



use cases; planetary terrain classification and global lo-
calisation, were implemented within the AI-CV Frame-
work, validating the AI-CV concept. Overall, both soft-
ware prototypes achieved impressive results in their own
right.
The developments achieved within ViBEKO, related with
the AI-CV Framework as part of the MCS also has ap-
plicability in relation to spacecraft operations. Similar
use cases to those identified in ViBEKO can be foreseen
where data products may be automatically analysed using
trained models, deployed within the integrated AI Plat-
form and MCS solutions, switching out the frontend for a
more suitable visualisation tool. This would be applica-
ble for both deep space missions (e.g., JUICE) and also
missions targeting LEO (e.g., IOSM/ADR style missions,
or Earth Observation platforms).
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